Neural population coding of multiple stimuli.
نویسندگان
چکیده
In natural scenes, objects generally appear together with other objects. Yet, theoretical studies of neural population coding typically focus on the encoding of single objects in isolation. Experimental studies suggest that neural responses to multiple objects are well described by linear or nonlinear combinations of the responses to constituent objects, a phenomenon we call stimulus mixing. Here, we present a theoretical analysis of the consequences of common forms of stimulus mixing observed in cortical responses. We show that some of these mixing rules can severely compromise the brain's ability to decode the individual objects. This cost is usually greater than the cost incurred by even large reductions in the gain or large increases in neural variability, explaining why the benefits of attention can be understood primarily in terms of a stimulus selection, or demixing, mechanism rather than purely as a gain increase or noise reduction mechanism. The cost of stimulus mixing becomes even higher when the number of encoded objects increases, suggesting a novel mechanism that might contribute to set size effects observed in myriad psychophysical tasks. We further show that a specific form of neural correlation and heterogeneity in stimulus mixing among the neurons can partially alleviate the harmful effects of stimulus mixing. Finally, we derive simple conditions that must be satisfied for unharmful mixing of stimuli.
منابع مشابه
Population coding in sparsely connected networks of noisy neurons
This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is roote...
متن کاملImpact of triplet correlations on neural population codes
Which statistical features of spiking activity matter for how stimuli are encoded in neural populations? A vast body of work has explored how firing rates in individual cells and correlations in the spikes of cell pairs impact coding. But little is known about how higher-order correlations, which describe simultaneous firing in triplets and larger ensembles of cells, impact encoded stimulus inf...
متن کاملTriplet correlations among similarly tuned cells impact population coding
Which statistical features of spiking activity matter for how stimuli are encoded in neural populations? A vast body of work has explored how firing rates in individual cells and correlations in the spikes of cell pairs impact coding. Recent experiments have shown evidence for the existence of higher-order spiking correlations, which describe simultaneous firing in triplets and larger ensembles...
متن کاملDOI 10.1007/s00359-001-0257-7
Unique patterns of spike activity across neuron populations have been implicated in the coding of complex sensory stimuli. Delineating the patterns of neural activity in response to varying stimulus parameters and their relationships to the tuning characteristics of individual neurons is essential to ascertaining the nature of population coding within the brain. Here, we address these points in...
متن کاملA neural implementation of Bayesian inference based on predictive coding
Predictive coding is a leading theory of cortical function that has previously been shown to explain a great deal of neurophysiological and psychophysical data. Here it is shown that predictive coding can perform almost exact Bayesian inference when applied to computing with population codes. It is demonstrated that the proposed algorithm, based on predictive coding, can: decode probability dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 9 شماره
صفحات -
تاریخ انتشار 2015